Extensions 1→N→G→Q→1 with N=C2 and Q=C42.12C4

Direct product G=N×Q with N=C2 and Q=C42.12C4
dρLabelID
C2×C42.12C464C2xC4^2.12C4128,1649


Non-split extensions G=N.Q with N=C2 and Q=C42.12C4
extensionφ:Q→Aut NdρLabelID
C2.1(C42.12C4) = C424C8central extension (φ=1)128C2.1(C4^2.12C4)128,476
C2.2(C42.12C4) = C4×C22⋊C8central extension (φ=1)64C2.2(C4^2.12C4)128,480
C2.3(C42.12C4) = C4×C4⋊C8central extension (φ=1)128C2.3(C4^2.12C4)128,498
C2.4(C42.12C4) = C42.13C8central extension (φ=1)64C2.4(C4^2.12C4)128,894
C2.5(C42.12C4) = C42.425D4central stem extension (φ=1)64C2.5(C4^2.12C4)128,529
C2.6(C42.12C4) = C23.32M4(2)central stem extension (φ=1)64C2.6(C4^2.12C4)128,549
C2.7(C42.12C4) = C428C8central stem extension (φ=1)128C2.7(C4^2.12C4)128,563
C2.8(C42.12C4) = C425C8central stem extension (φ=1)128C2.8(C4^2.12C4)128,571
C2.9(C42.12C4) = C4⋊C43C8central stem extension (φ=1)128C2.9(C4^2.12C4)128,648
C2.10(C42.12C4) = C22⋊C44C8central stem extension (φ=1)64C2.10(C4^2.12C4)128,655
C2.11(C42.12C4) = C42.6C8central stem extension (φ=1)64C2.11(C4^2.12C4)128,895
C2.12(C42.12C4) = C8.12M4(2)central stem extension (φ=1)64C2.12(C4^2.12C4)128,896

׿
×
𝔽